Chinese Character Image Completion Using a Generative Latent Variable Model
نویسندگان
چکیده
منابع مشابه
A Latent Variable Model for Generative Dependency Parsing
We propose a generative dependency parsing model which uses binary latent variables to induce conditioning features. To define this model we use a recently proposed class of Bayesian Networks for structured prediction, Incremental Sigmoid Belief Networks. We demonstrate that the proposed model achieves state-of-the-art results on three different languages. We also demonstrate that the features ...
متن کاملExtractive summarization using a latent variable model
Extractive multi-document summarization is the task of choosing sentences from a set of documents to compose a summary text in response to a user query. We propose a generative approach to explicitly identify summary and non-summary topic distributions in the sentences of a given set of documents (i.e., document cluster). Using these approximate summary topic probabilities as latent output vari...
متن کاملGenerative and Discriminative Latent Variable Grammars
Latent variable grammars take an observed (coarse) treebank and induce more fine-grained grammar categories, that are better suited for modeling the syntax of natural languages. Estimation can be done in a generative or a discriminative framework, and results in the best published parsing accuracies over a wide range of syntactically divergent languages and domains. In this paper we highlight t...
متن کاملA Discriminative Latent Variable Chinese Segmenter with Hybrid Word/Character Information
Conventional approaches to Chinese word segmentation treat the problem as a characterbased tagging task. Recently, semi-Markov models have been applied to the problem, incorporating features based on complete words. In this paper, we propose an alternative, a latent variable model, which uses hybrid information based on both word sequences and character sequences. We argue that the use of laten...
متن کاملA Latent-Variable Lattice Model
Markov random field (MRF) learning is intractable, and the approximation algorithms are computationally expensive. Since only a small subset of MRF is used frequently in computer vision, we characterize this subset with three concepts: (1) Lattice, (2) Homogeneity, and (3) Inertia; and design a non-markov high-bias low-variance model as an alternative to this subclass of MRF. Our goal is robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2021
ISSN: 2076-3417
DOI: 10.3390/app11020624